Three Dimensional Printing

Emanuel Sachs Professor of Mechanical Engineering sachs@mit.edu

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188
Public reporting burder for this collection of information is and reviewing this collection of information. Send commer Headquarters Services, Directorate for Information Operati law, no person shall be subject to any penalty for failing to	ts regarding this burden estimate or any other a ons and Reports (0704-0188), 1215 Jefferson I	aspect of this collection of inform Davis Highway, Suite 1204, Arlin	nation, including suggestions for reducin agton, VA 22202-4302. Respondents sho	g this burder to Department of Defense, Washington ould be aware that notwithstanding any other provision of
1. REPORT DATE (DD-MM-YYY) 30-05-2001		PE .	3. DATES	COVERED (FROM - TO) to 01-06-2001
4. TITLE AND SUBTITLE	•		5a. CONTRACT	NUMBER
Three Dimensional Printing			5b. GRANT NUI	MBER
Unclassified			5c. PROGRAM I	ELEMENT NUMBER
6. AUTHOR(S)			5d. PROJECT N	UMBER
Sachs, Emanuel;			5e. TASK NUMI	
			5f. WORK UNIT	
7. PERFORMING ORGANIZATIO MIT xxxxx, MAxxxxx	ON NAME AND ADDRESS	S		G ORGANIZATION REPORT
9. SPONSORING/MONITORING	AGENCY NAME AND AD	DDRESS	10. SPONSOR/M	IONITOR'S ACRONYM(S)
Office of Naval Research Internation Office of Naval Research Washington, DCxxxxx	nal Field Office		MONITOR'S REPORT	
APUBLIC RELEASE , 13. SUPPLEMENTARY NOTES See Also ADM001348, Thermal M downloaded from: http://www-mec		d in Cambridge, UI	K on May 30-June 1, 200	01. Additional papers can be
14. ABSTRACT 3D Printing is an SFF Process which ink-jet printing of a binder material	h creates parts in layers. Eac	ch layer is formed b	y spreading powder and	selectively joining the powder by
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION	ON OF: 17. LIMITOF ABST	TRACT NUME		RESPONSIBLE PERSON
a. REPORT b. ABSTRACT Unclassified Unclassified	c. THIS PAGE Unclassified		19b. TELEPHO International Area C Area Code Telepho 703767-9007 DSN 427-9007	code ne Number
				Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39.18

3DP™ Team

FACULTY	RESEARCH STAFF	GRADUATE STUDENTS	
Emanuel Sachs	James Serdy	David Ables René Apitz	
Michael Cima	Chris Stratton	Diana Buttz David Guo	
Samuel Allen	Benjamin Polito	Richard Holman	
Nick Patrikalakis		Sang-bum Hong Hongye Liu	
Linda Griffith	Post-Docs and Visitors	Adam Lorenz Mark Oliveira Chilukuri Ram	
	Hiroyasu Tsuchiya	Stephen Smyth Scott Uhland	
	Yasushi Enokido	Markus Werner Calvin Yuen	

The 3D Printing Process

- Any material as a powder
- Scaleable with multiple nozzles
- Local Composition
 Control

MIT's 8-jet Printhead

Allows for wide range of materials, precise droplet location and scalability.

Printing a layer

Removing the Green Part from the Powder Bed

Office Modeler;

Z Corp., Burlington, MA

- Low cost machine.
- Office environment (water binder, starch powder or plaster based)
- High reliability.
- FAST

Ceramic Molds for Metal Castings;

Soligen, Inc. Northridge, CA

- 3D Print Ceramic mold
 - Colloidal silica binder into alumina powder
- Fastest route to a casting.
- Soligen Operates "Parts Now" which accepts files and returns castings.

Filters; Specific Surfaces, Franklin, MA

- Focus: ceramic filters for power plants high filter area, durable, cleanable.
- Successful tests in "bag houses" (2000 hours). Tests on full scale pilot plant next. EPRI funded.

Medical Applications;

Therics, Inc. Princeton, NJ

- Drug delivery devices.
- Scaffolds for tissue engineering.
- Direct printing of tissue and organs.
- Direct printing of metallic prostheses.

Direct Printing of Metal Tooling;

ExtrudeHone Corp., Irwin, PA

- Directly print metal tooling.
 - Polymer binder into metal powder.

Tooling by Direct Printing

Finished Tool and Molded Part

Conformal Cooling in an Industrial Application

Tool made by 3D Printing with serpentine cooling channel

Improvement over Production Tool

Cycle time		Part Distortion	
0/ 31 1 1		0.07	

Condition #1

Condition #2

15% (limited by sprue)	9%	
0%(limited by sprue)	37%	

Conformal Cooling; Data from Design of Expt's

Typically

- 20% reduction in cycle time
- 15% reduction in shrinkage

Schmidt et al, "Conformal Cooling vs Conventional Cooling: An Injection Molding Case Study with p-20 and 3DP tooling, MRS 4/00

Partnership in Technology

EXTRUDEHONE

- Blow Mold Cavities
 - MoldFusion™ First Design
 - Two conformal and opposing flow circuits
 - MoldFusion™ Second Design
 - · Two conformal linear flow circuits
 - Turbulence chevron features

Demonstration of Performance: Conformal Cooling

Conformal Cooling Condition

$$\frac{L^2}{k} < \frac{Cycle\ Time}{\rho\ c}$$

Conformal Cooling Channel Design Methodology

Surface Textures for Heat Transfer Augmentation

Heat Transfer Coefficient

Pressure Drop (ΔP)

Rapid Thermal Cycle Tooling

3D Printed Tool for Rapid Thermal Cycling

The tool has cooling/heating channels in the top plate and stands on 2000 posts (which allow for thermal expansion/contraction)

Homogeneous Metal Parts by Infiltration

Porous skeleton of nickel or other high temperature material Infiltration using same material containing a melting point depressant (MPD)

Diffusion of MPD into skeleton creates a solid homogeneous part

~1 kg infiltrated part (Ni-4Si)

Infiltration Distance

- Capillary limit $h = \frac{1}{2\gamma} \cdot \frac{2\gamma}{-1}$ >0.5 m typical for 100 μ m powder
- Premature freezing of infiltrant can choke liquid flow

Skeleton made of $\sim 50-150 \mu m$ powder (both cases)

Ni infiltrated with Ni-10Si

Steel infiltrated with Cu

Solidification Time Sequence

- Wire bundle infiltrated and quenched at various times
- Ni wire w/ Ni–10Si infiltrant
- Infiltrated at 1200°C

Solidification Time Sequence

- Wire bundle infiltrated and quenched at various times
- Ni wire w/ Ni–10Si infiltrant
- Infiltrated at 1200°C

Mechanical Properties

Infiltrated

- Infiltrated skeleton held 12 hrs at 1200°C for homogenization
- Cast ingot of same composition
- Hopefully Cr or other elements will provide more strengthening

Cast ingot

Other Material Systems

• Al–Si

- Low solubility (no freeze-off)
- Similar to cast microstructure
- Pure Al infiltrated w/ Al–12Si at 625°C achieved
 93.5% density

• Ni-Cr-Si

- solid solution strengthening
- keep constant Ni:Cr ratio during diffusional solidification
- Steel?

3D Printing: Dry vs. Wet Layer Spreading

Dry

- Spherical as small as 10μ
- Acycular as small as 20 μ

Wet

 Anything that can be slurry processed

Parts with Fine Metal Powder

Architecture 1: Stationary Bed, Raster Print

Z Corp.

Small Parts; Distinguishing Features

- Powder beds are small, light (<1 kg) and often cohesive.
 - **⇒** Move powder bed
- Perimeter is short
 - ⇒ Vector Print the perimeter.

X axis

Vector printing

Architecture 2: Moving Bed, Vector Print 2a. Layer Inspection (Done in transit) 3. Layer **Drying** 2. Layer Forming 0 4. Binder **Printing** 1. Substrate Load & Unload 5. Binder Drying

- All stations in use all the time.
- Automation ready.
- Improved surface finish.

Barrium Titanate Parts made by 3DP with Slurry

Local Composition Control; Like Color ink-jet Printing, but with Materials

Titanium Carbide slurry printed in Moly powder; 83% dense

Information Flow

Summary: 3DP for Thermal Management

- Cooling/heating channels high complexity
- Surface textures
- Macro cellular structures
- Locally controlled porosity
- Locally controlled thermal conductivity